Crop Application#
QSDsan: Quantitative Sustainable Design for sanitation and resource recovery systems
- This module is developed by:
Yalin Li <mailto.yalin.li@gmail.com>
This module is under the University of Illinois/NCSA Open Source License. Please refer to https://github.com/QSD-Group/QSDsan/blob/main/LICENSE.txt for license details.
- class qsdsan.sanunits._crop_application.CropApplication(ID='', ins: Sequence[Stream] | None = None, outs: Sequence[Stream] | None = (), thermo=None, init_with='WasteStream', if_material_loss=True, loss_ratio=0.02)#
Recovery nutrients in the recycled excreta (energy not recovered) based on Trimmer et al.
- Parameters:
if_material_loss (bool or dict) – If material loss occurs during application.
loss_ratio (float or dict) – Fractions of material losses during application (if if_materiloass is True).
Examples
References
[1] Trimmer et al., Navigating Multidimensional Social–Ecological System Trade-Offs across Sanitation Alternatives in an Urban Informal Settlement. Environ. Sci. Technol. 2020, 54 (19), 12641–12653. https://doi.org/10.1021/acs.est.0c03296.
- F_BM: dict[str, float]#
All bare-module factors for each purchase cost. Defaults to values in the class attribute
_F_BM_default
.
- F_D: dict[str, float]#
All design factors for each purchase cost item in
baseline_purchase_costs
.
- F_M: dict[str, float]#
All material factors for each purchase cost item in
baseline_purchase_costs
.
- F_P: dict[str, float]#
All pressure factors for each purchase cost item in
baseline_purchase_costs
.
- baseline_purchase_costs: dict[str, float]#
All baseline purchase costs without accounting for design, pressure, and material factors.
- design_results: dict[str, object]#
All design requirements excluding utility requirements and detailed auxiliary unit requirements.
- equipment_lifetime: int | dict[str, int]#
Lifetime of equipment. Defaults to values in the class attribute
_default_equipment_lifetime
. Use an integer to specify the lifetime for all items in the unit purchase costs. Use a dictionary to specify the lifetime of each purchase cost item.
- heat_utilities: tuple[HeatUtility, ...]#
All heat utilities associated to unit. Cooling and heating requirements are stored here (including auxiliary requirements).
- installed_costs: dict[str, float]#
All installed costs accounting for bare module, design, pressure, and material factors. Items here are automatically updated at the end of unit simulation.
- line: str = 'Crop application'#
class-attribute Name denoting the type of Unit class. Defaults to the class name of the first child class
- property loss_ratio#
[float] or [dict] Fractions of material losses during application. If a single number is provided, then it is assumed that losses of all Components in the WasteStream are the same.
Note
Set state variable values (e.g., COD) will be retained if the loss ratio is a single number (treated like the loss stream is split from the original stream), but not when the ratio is a dict.
- parallel: dict[str, int]#
Name-number pairs of baseline purchase costs and auxiliary unit operations in parallel. Use ‘self’ to refer to the main unit. Capital and heat and power utilities in parallel will become proportional to this value.
- power_utility: PowerUtility#
Electric utility associated to unit (including auxiliary requirements).
- prioritize: bool#
Whether to prioritize unit operation specification within recycle loop (if any).
- purchase_costs: dict[str, float]#
Itemized purchase costs (including auxiliary units) accounting for design, pressure, and material factors (i.e.,
F_D
,F_P
,F_M
). Items here are automatically updated at the end of unit simulation.
- responses: set[bst.GenericResponse]#
Unit design decisions that must be solved to satisfy specifications. While adding responses is optional, simulations benefit from responses by being able to predict better guesses.
- run_after_specifications: bool#
Whether to run mass and energy balance after calling specification functions