Membrane Distillation¶
QSDsan: Quantitative Sustainable Design for sanitation and resource recovery systems
This module is developed by:
Jianan Feng <jiananf2@illinois.edu>
Yalin Li <mailto.yalin.li@gmail.com>
This module is under the University of Illinois/NCSA Open Source License. Please refer to https://github.com/QSD-Group/QSDsan/blob/main/LICENSE.txt for license details.
- class qsdsan.sanunits._membrane_distillation.MembraneDistillation(ID='', ins: Sequence[AbstractStream] | None = None, outs: Sequence[AbstractStream] | None = (), thermo=None, init_with='WasteStream', include_construction=True, lifetime={'Membrane': 7920}, influent_pH=8.16, target_pH=10, N_S_ratio=2, m2_2_m3=0.0008333333333333334, Dm=2.28e-05, porosity=0.9, thickness=7.000000000000001e-05, tortuosity=1.2, Henry=1.6100000000000002e-05, Ka=1.7500000000000002e-05, capacity=6.01, membrane_price=93.29)¶
Membrane distillation recovers nitrogen as ammonia sulfate based on vapor pressure difference across the hydrophobic membrane. Water flux across membrane is ignored.
- Parameters:
ins (Iterable(stream)) – influent, acid, base, mem_in.
outs (Iterable(stream)) – ammonium sulfate, ww, mem_out.
influent_pH (float) – Influent pH.
target_pH (float) – Target pH for membrane distillation.
N_S_ratio (float) – mol(N) to mol(S) ratio.
m2_2_m3 (float) – m2 to m3 factor, 1/specific surface area, [m3/m2].
Dm (float) – NH3 molecular diffusivity in air, [m2/s].
porosity (float) – Membrane porosity.
thickness (float) – Membrane thickness, [m].
tortuosity (float) – Membrane tortuosity.
Henry (float) – NH3 Henry constant, [atm*m3/mol].
Ka (float) – Overall mass transfer coefficient, [m/s].
capacity (float) – Membrane treatment capacity (permeate flux), [kg/m2/h].
membrane_price (float) – Membrane price, [$/kg] ([$/m2]).
References
- [1] Li, Y.; Tarpeh, W. A.; Nelson, K. L.; Strathmann, T. J.
Quantitative Evaluation of an Integrated System for Valorization of Wastewater Algae as Bio-Oil, Fuel Gas, and Fertilizer Products. Environ. Sci. Technol. 2018, 52 (21), 12717–12727. https://doi.org/10.1021/acs.est.8b04035.
- [2] Doran, P. M. Chapter 11 - Unit Operations. In Bioprocess Engineering
Principles (Second Edition); Doran, P. M., Ed.; Academic Press: London, 2013; pp 445–595. https://doi.org/10.1016/B978-0-12-220851-5.00011-3.
- [3] Spiller, L. L. Determination of Ammonia/Air Diffusion Coefficient Using
Nafion Lined Tube. Analytical Letters 1989, 22 (11–12), 2561–2573. https://doi.org/10.1080/00032718908052375.
- [4] Scheepers, D. M.; Tahir, A. J.; Brunner, C.; Guillen-Burrieza, E.
Vacuum Membrane Distillation Multi-Component Numerical Model for Ammonia Recovery from Liquid Streams. Journal of Membrane Science 2020, 614, 118399. https://doi.org/10.1016/j.memsci.2020.118399.
- [5] Ding, Z.; Liu, L.; Li, Z.; Ma, R.; Yang, Z. Experimental Study of Ammonia
Removal from Water by Membrane Distillation (MD): The Comparison of Three Configurations. Journal of Membrane Science 2006, 286 (1), 93–103. https://doi.org/10.1016/j.memsci.2006.09.015.
- [6] Al-Obaidani, S.; Curcio, E.; Macedonio, F.; Di Profio, G.; Al-Hinai, H.;
Drioli, E. Potential of Membrane Distillation in Seawater Desalination: Thermal Efficiency, Sensitivity Study and Cost Estimation. Journal of Membrane Science 2008, 323 (1), 85–98. https://doi.org/10.1016/j.memsci.2008.06.006.
- [7] Kogler, A.; Farmer, M.; Simon, J. A.; Tilmans, S.; Wells, G. F.;
Tarpeh, W. A. Systematic Evaluation of Emerging Wastewater Nutrient Removal and Recovery Technologies to Inform Practice and Advance Resource Efficiency. ACS EST Eng. 2021, 1 (4), 662–684. https://doi.org/10.1021/acsestengg.0c00253.
- [8] Pikaar, I.; Guest, J.; Ganigue, R.; Jensen, P.; Rabaey, K.; Seviour, T.;
Trimmer, J.; van der Kolk, O.; Vaneeckhaute, C.; Verstraete, W.; Resource Recovery from Water: Principles and Applicaiton. IWA 2022.
- line: str = 'Membrane distillation'¶
class-attribute Name denoting the type of Unit class. Defaults to the class name of the first child class